

BNL Covariance Effort

(mini-CSEWG, Port Jefferson, June 22-23, 2010)

M. Herman
National Nuclear Data Center,
Brookhaven National Laboratory
mwherman@bnl.gov

Advanced Fuel Cycle Initiative (AFCI)

Major covariance effort by BNL and LANL

List of nuclei in AFCI (priority materials in **bold**)

^{1}H	28 Si	⁹² Mo	109 Ag	¹⁴⁹ Sm	²³² Th
^{2}H	29 Si	94 Mo	$^{127}\mathrm{I}$	151 Sm	^{233}U
⁴ He	30 Si	⁹⁵ Mo	^{129}I	¹⁵² Sm	^{234}U
⁶ Li	⁵⁰ Cr	⁹⁶ Mo	131 Xe	153 Eu	235 U
⁷ Li	⁵² Cr	97 Mo	¹³² Xe	¹⁵⁵ Eu	$^{236}\mathbf{U}$
⁹ Be	⁵³ Cr	⁹⁸ Mo	¹³⁴ Xe	155 Gd	$^{238}\mathbf{U}$
$^{10}\mathbf{B}$	⁵⁵ Mn	100 Mo	133 Cs	156 Gd	²³⁷ Np
$^{11}\mathbf{B}$	⁵⁴ Fe	⁹⁹ Tc	135 Cs	157 Gd	238 Pu
12 C	⁵⁶ Fe	101 Ru	¹³⁹ La	158 Gd	239 Pu
^{15}N	⁵⁷ Fe	102 Ru	¹⁴¹ Ce	160 Gd	²⁴⁰ Pu
$^{16}\mathbf{O}$	⁵⁸ Ni	103 Ru	$^{141}\mathbf{Pr}$	¹⁶⁶ Er	²⁴¹ Pu
$^{19}\mathrm{F}$	60 Ni	104 Ru	143 Nd	¹⁶⁷ Er	242 Pu
23 Na	⁹⁰ Zr	106 Ru	145 Nd	¹⁶⁸ Er	241 Am
24 Mg	⁹¹ Zr	103 Rh	146 Nd	¹⁷⁰ Er	242m Am
25 Mg	⁹² Z r	105 Pd	148 Nd	²⁰⁴ Pb	243 Am
26 Mg	93 Zr	¹⁰⁶ Pd	¹⁴⁷ Pm	²⁰⁶ Pb	²⁴² Cm
^{27}Al	⁹⁴ Z r	107 Pd		²⁰⁷ Pb	²⁴³ Cm
	95 Zr	¹⁰⁸ Pd		²⁰⁸ Pb	²⁴⁴ Cm
	96 Zr			209 Bi	²⁴⁵ Cm
	⁹⁵ Nb				²⁴⁶ Cm

AFCI/GNEP project will provide 110 covariances, which will serve as a reference for constructing ENDF-6 formatted covariance files for ENDF/B-VII.1.

LANL - light nuclei, actinides, fission spectra.

BNL - structural materials, 23-Na, minor actinides, and all the rest including RR.

- AFCI-1.2 library, August 2009
- AFCI-1.3 library, April 2010
- AFCI-2.0 library, August 2010 (to be used by SG33)

Covariance methodology at BNL Strength in diversity

- Thermal and Resonance Region (source: Atlas of Neutron Resonances)
 - MF32 with scattering radius and thermal point uncertainties reproduced through correlations (if possible)
 - MF33 through the recently developed 'kernel approximation'
 - MF32 with systematic uncertainties in MF33
 - 'low-fidelity' (Mark Williams) solution
 - Assimilation
- Fast neutron range (MF33)
 - EMPIRE/KALMAN with/without experimental data
 - Dispersion analysis differences between evaluations
 - Reconsider previous work
 - Assimilation
- Challenges
 - (i) correlations, (ii) correlations, (iii) correlations, ...
 - Tendency of the rigorous methods to provide unbelievable uncertainties
 - Producing uncertainties for the existing files
- Goal for VII.1: provide consistent and reasonable set of covariances for nuclei relevant to AFCI (extensive checking)

Covariances for structural materials

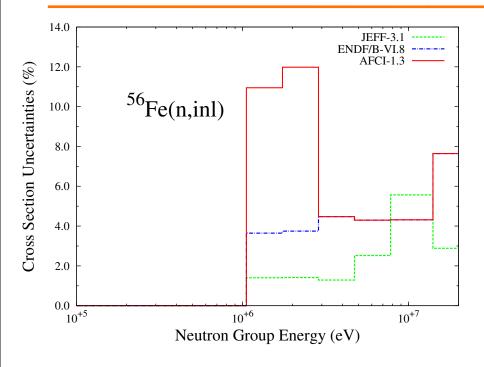
⁵²Cr, ⁵⁶Fe, ⁵⁸Ni

M. Pigni

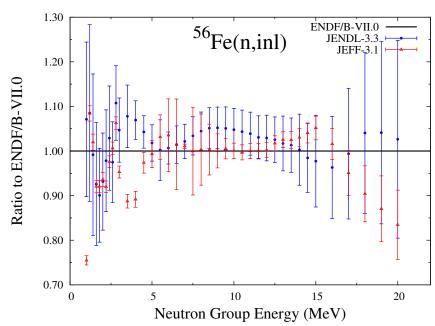
- ENDF/B-VI.8 covariances in fast neutron region, due to Hetrick et al. (1991) who authored evaluations, **restored!**
- Were dropped in VII.0 mostly because of RR
- Uncertainties increased in the above-threshold regions due to:
 - discrepancy between VII.0 and other libraries
 - more pessimistic JENDL-3.3 estimates

Changes in ⁵⁶Fe

E (MeV)	Uncertainty (original)	Uncertainty (adopted)	Reaction
1-2	1.5%	7.5%	Total (MT=1)
1-2	3.9%	15.9%	Absorption (MT=3)
1-2	3.3%	15.9%	1 st Exc. State (MT=51)
10-20	8.9%	61.5%	Capture (MT=102)



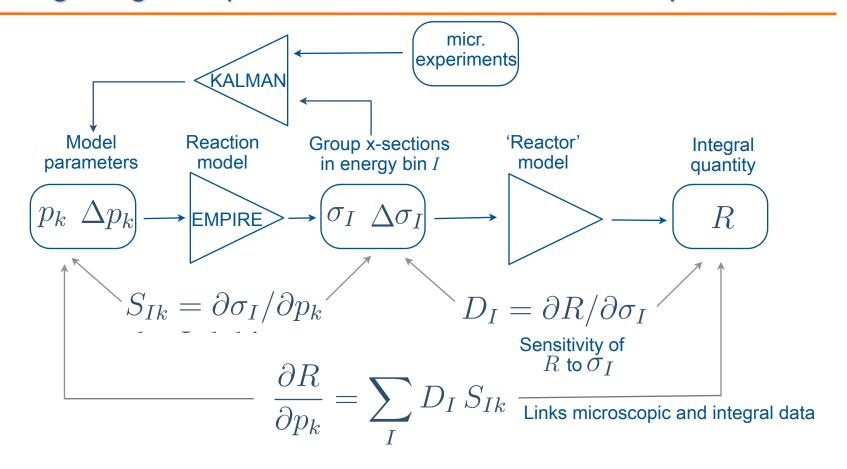
Covariances for structural materials


⁵²Cr, ⁵⁶Fe, ⁵⁸Ni

M. Pigni

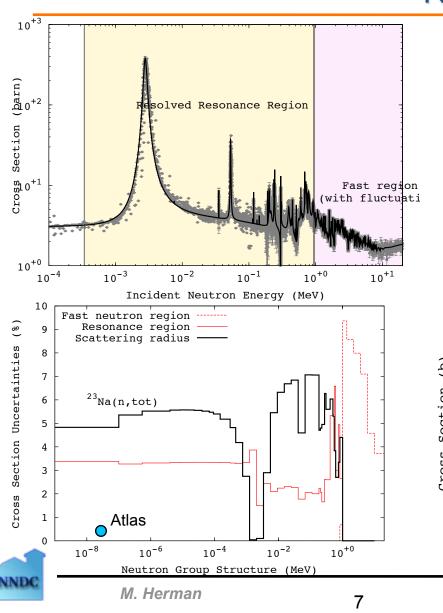
 Analogous procedure applied to the remaining two structural materials ⁵²Cr & ⁶⁰Ni

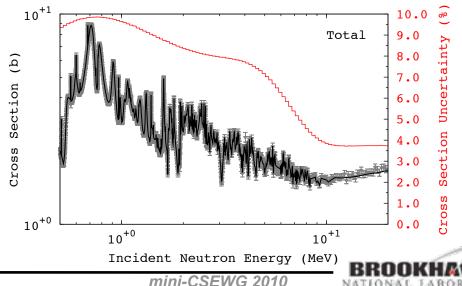
- JEFF-3.1 considered too low for ENDF/B-VII 0
- Very close to threshold discrepancy of 28% is observed!
- Only a few points modified to minimize changes



Assimilation (INL&BNL)

Linking integral experiments with reaction model parameters


Using S_{Ik} , microscopic exp. data, and Kalman filter ==> $\langle \Delta p_k \, \Delta p_\ell \rangle$ covariance matrix, which contains constraints imposed by microscopic exp. data.



Assimilation

²³Na(n,*)

- EMPIRE/KALMAN used in the fast range
- Fluctuations in above 1 MeV reproduced with 'Tune' parameter in EMPIRE
- ~120 resonance and reaction model parameters varied
- Scattering radius included (no correlations)

Conclusions

- Covariances for 110 AFCI materials to be ENDF-6 formatted and included in the ENDF/B-VII.1 release in Dec. 2011
- Covariances for the priority materials included in the beta-0 version (Dec. 2010)
- BNL contributes to the processing codes comparison (see talk by Ramon)
- Quality Assurance a smart system, influential system implemented at BNL (PO)
- We are still working on improving covariance methodology, e.g., 'kernel approach', assimilation, ...

Motto for covariances:

'Might not be perfect but must be sensible'

